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Scattering Coefficients for a Trapezoidal Potential
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The trapezoidal potential is the result of the superposition of a rectangular barrier and a
linear potential. It has interestin the field of solid-state physics as long as heterostructures
are concerned. The determination and discussion of the scattering coefficients for this
potential revealed unknown properties of the Airy functions.
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1. INTRODUCTION

The trapezoidal potential is associated with interesting problems found in
nanoheterostructure studies. In the field of semiconductors, the tunneling problem
is quite important and some mathematical modeling is required. The Schottky
potential, for example, can be modeled by a linear potential and plays a central
role in the theoretical efforts to describe the phenomenology observed in that
field.

The passage of electrons in a semiconductor from the valence band to the
transmission one can be achieved, or stimulated, by an applied external electric
field. In some situations, the electrons must overcome an internal energy gap that
can be modeled by arectangular potential. The superposition of these two potentials
(the Schottky potential, modeled by a linear potential, and the rectangular one)
looks like a trapezoidal potential. So there is some interest in considering this
situation and exploring some of its characteristics. This is the central content of
the paper.

In the next section, we define the trapezoidal barrier and solve the corre-
sponding Schroedinger equation. Some convenient functions that are here defined
have been proven to be very useful in the algebraic analysis of the problem. The
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scattering coefficients are found analytically in terms of these functions. Section 3
concerns the limit in which the trapezoidal potential reduces to a linear one. The
rectangular potential limit is discussed in Section 4. The scattering coefficients for
the linear and rectangular potential, known in the literature, are summarized in the
Appendix.

2. THE TRAPEZOIDAL BARRIER

The trapezoidal barrier is the result of the superposition of a rectangular and
a linear potential. It is described mathematically by

0, x<0
V(X)={Vo+ &My 0<x<a, Vo=V (2.1)
0, X>a

whereV, is the maximum height (greater trapeze leg) of the barriex at0) and
V1 is the lower height (smaller leg) at= a.
Let us introduce the dimensionless paramgteefined as
V
p=-1 0<p<1 (2.2)
Vo
Clearly, the casg = 0(V; = 0) corresponds to a pure linear potential (modeling
the Schottky potential), while wheth= 1(V; = V), we obtain a pure rectangular
barrier of height/y and widtha.
In terms ofB, the potential (2.1) can be defined in the region & < a as

X
V(x) = Vo + (B — Vo
or
V(X)=Vo(1—17§>, O<x<a (2.3)
where the parameter

has been proven more convenient for the algebraic analysis. In termswef
get a pure rectangular potential wher= 0 and a pure linear potential when
n=1

The time-independent Schroedinger equation for a particle of measd
energyE associated with this problem reads

d2
e LI
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where
e =Kk/ko
k? = 2mE/h? 26)
k2 = 2m\p/h?
pz _ kg _K2

where the definition op is anticipated for future usage.
The solution to equation (2.5) is easily found if we introduce the “natural”
variable¢ defined as

E=600=o (2 +e*=1), n#0 @7
where
Go = (koa)?/*n~2/* (2.8)
In terms ofg, Eq. (2.5) reads
82
o = —EUE) 2.9

whose solutions are known to be expressed in terms of the Airy funddigng)
andBi(—&) (Abramowitzet al., 1970).

Therefore, the general solution for a particle arriving from the left on the
trapezoidal barrier potential (2.3) is then given by

Ya(x) = €+ Ae Tk x <0
Yk(X) = | ¥2(x) = BAi(—§) + C Bi(—§), O<x<a. (2.10)
U3(x) =Dk, x>a

The quantitiesA, B, C, and D can be determined as usual by imposing
continuity of the solution and its derivative in the borders of the potential. For this
purpose, it is convenient to introduce the functiéi§) andG(¢) defined by

F(6) = IKAI(—€) — n L AI(=§), 170 2.11)

G(E) = IKBi(-£) ~ n LB (=), 1 #0 2.12)

where the prime means derivative with respect to the variableContinuity con-
ditions of and its spatial derivative at= 0 andx = a determine the scattering
coefficientsA, B, C, andD as

F*(5a)G"(60) — G*(¢a) F*(50)

A= AK = — <

(2.13)



1798 Iwamoto, Aquino, and Aguilera-Navarro

B = B(k) = w (2.14)
C=C(Kk) = w (2.15)
and

D = D(K) = F*(£a)G(&a) ; G*(éa)':@a)e_ika _ %ne—ika (2.16)

where
Eo = £(0) = go(¢” — 1) (2.17)
Ea=&@) =0o(e?+n—1), n#0 (2.18)
A = G(&)F*(¢a) — F(60)G™(%a) (2.19)

and use was made of the Wronskiath Ai(x), Bi(x)] = 1/7 (Abramowitzet al.,
1970). The star in (2.13)—(2.19) means complex conjugate.

From now on, we will be particularly interested onlyArandD, the reflection
and transmission coefficients, respectivalyis already expressed i Suitable
form, Eq. (2.16), for our further discussion.

By introducing the auxiliary quantities

Ro = €[ A (~£0)Bi (&) — A (—£2)Bi(~£0)] (2.20)
Ry — (CEZ)ZZ[Af(—Sa) B(~£0) — A{(~£0)B(~&a)] (2.21)
Iy = j(‘i_ogm(—sa)sg(—so) ~ A(-5)Bi(-&), n#0  (222)

and
12 = T LA (—£)Bi(—£0) — A(—£)Bi(—£all. 7 #0 (2.23)

we can rewrite the reflection coefficieAtk) andA as

AK) = _TNA (2.24)

and
A =K[(Re— Ry) +i(l1— I2)] (2.25)

with
Na = K3[(Ry + Rp) +i(l1 + 12)] (2.26)

By expressingNa and A in polar representation
Na = [Na| € (2.27)
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A = |A| € (2.28)
with
INAl = k3V/(Ry + Re)2 + (11 + 12)? (2.29)
1+ 12
tana = 2.30
and
|Al = KV(Re — Ry)? + (11 — 12)? (2.31)
L —1
tan) = — 2 (2.32)
R-R
the reflection coefficient can be written in a very compact way as
N
AK) = —% gre (2.33)

3. THE LINEAR POTENTIAL LIMIT

By simple inspection of equations (2.11)—(2.32), it can be seen that the limit
n = 1 reproduces exactly all the scattering coefficients associated with the linear
potential obtained in Gotet al. (2002).

On the other hand, the limijt — 0, which is expected to reproduce the results
for the rectangular barrier, is not so simple and requires careful analysis. This limit
is dealt with in the next section.

4. THE RECTANGULAR POTENTIAL LIMIT

In order to obtain the rectangular potential results from the trapezoidal barrier
ones, we start by Taylor expanding the Airy functiai(x) in some neighborhood
X — Xo| < R of the pointxg in a series of power aof — xg

Ai(x) = i %Ai(”)(xo)(x —Xo)". 4.1)
n=0 "

The differential equation for the Airy function
Ai”(X) = XoAi(Xq) (4.2)

allows us to express the derivatives of order 2 and higher in terniEg)
andAi’(Xg). Thus, the expansion (4.1) can be expressed as two infinite sums, one
multiplying Ai(Xg) and the other multiplying\i’(xo). A careful inspection of these
infinite sums identify terms that brought together reproduce the power expansion



1800 Iwamoto, Aquino, and Aguilera-Navarro

of the hyperbolic sine and hyperbolic cosine functions and other terms, as it will
be shown in the following.
In order to simplify notation, let us define the quantitésandZ as

X =X—Xo 4.3)
and
Z = X/Xo (4.4)

In terms of these quantities, the expansion (4.1), after some rearrangement of the
terms, reads

) = A [ 2 4 Zp B g XX X
AR TV TR 6 "180" 30
Xo X8 ) XoX2  x5X4
|+ Ao | X ki
+1aa0" }+ |(xo)[ (+ 3t 5 +
x4 X7 XoX®  13xoX°
GARRIANNII 4.5
T2 504" 1 120 T 90720 ] (4.5)

The first terms in the infinite sum multiplyindi(xg) are recognized as the Taylor
expansion of the function cosZ), and the first terms in the infinite sum multi-
plying A'(Xo) are recognized as the Taylor expansioXo$inh(Z)/Z. Therefore,
we can express the expanison (4.1) as

inhzZ

Ai(x) = Ai(xo) coshZ + Ai (xo)xT + O(X3) (4.6)
Proceeding along the same steps, we obtain the Taylor expansions
inhZ
Ai'(x) = Ai'(xo) coShZ + Ai(Xo)XeX 2 4 O(X?) 4.7)
inhZ 3
Bi(x) = Bi(x) coshZ + Bi’ (xo)XT Oo(X?) (4.8)
4 ./ . SlnhZ 2
Bi’(x) = Bi’(Xg) coshZ + Bi(xg)XoX + O(X9) (4.9)

Notice that Eqgs. (4.7) and (4.9) can be obtained directly from (4.6) and (4.8),
respectively.
Coming back to the main problem of this section, let

X = —&a = —(£0 + nlo) (4.10)

and

2
Xo = —Eo = (op2/ K2 = (koa)2/3%n*2/3 (4.11)
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where p and g are defined in (2.6) and (2.8), respectively. A straightforward
calculation leads to

X = —n0go (4.12)
and
Z=—pa (4.13)
wherea is the barrier width.
In terms oft, and&g, we have that
Ai(—§a) = Ai(—éo) coshpa)

— (ko) 3 Al () ‘Oa)

+ O(n) (4.14)

Ai'(—&a) = Ai'(—&o) coshpa)
sinh Qoa)

1 p?
™ (ko2)** Ai(—&0) + O(n) (4.15)
and analogous expressions ®i(—&;) and Bl/(—ga).
Substituting these results into equations (2.20)—(2.23), the quarRitjd3,
I1, andl, reduce to

_ ,XsinhZ 3 k2(kZa)** sinh (pa) ;5
Ri=e'————+0(X°) = @ o "2+ 0@  (4.16)
_ 04n? XX sinhZ 3
R, = k)l 7 Z + O(X7)
_ ,oz(kga) sinh (pa) o3
= k§n a + O(n) (4.17)
€Qon 3 (kg )2/3 1/3
Iy = koa coshz + O(X®) = iZa coshpa)Z+ O(n) (4.18)
l, =—I (4.19)

where use was made of the Airy function Wronskif Ai(x), Bi(x)] = 1/
(Abramowitzet al., 1970) and of Egs. (2.8), (4.11), (4.12), and (4.13).

Now we can combine the quantitié®, Ry, 11, and |, to obtain, in lower
order ofyn

Ri+R = (koa)2/3 th Qoa) 771/3 (420)
g pa
(k2a)®’* sinh (oa)
Re— R = n"3(p? — k) (4.21)

ks pa
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l1+1,=0 (4.22)
2/3

2k(k2a)
mkoa

When Egs. (4.20) through (4.23) are substituted into Egs. (2.29) through (2.32),
we obtain

i — 1l = n'/® coshpa) (4.23)

INal = Mﬁ”‘? sinh (pa) (4.24)
pamr
tanae =0 (4.25)
2 2/3 ) 4k2 02
N %(ane: e \/S,nhz(pa) N kép_ (4.26)
tani = tan(d) coth(pa) (4.27)

where the anglé is defined by the relations

k =ko cost and p = kg sing (4.28)

4.1. The Reflection Coefficient

Now we are ready to evaluate the reflection coefficient A given in Eqg. (2.33),
for a trapezoidal potential, in the limit whengoes to zero. When Egs. (4.24) and
(4.26) are substituted into (2.33), we obtain, since 0 according to Eq. (4.25),

sinh (pa) e~'*
/it (pa) + ak2p2/ké

with A defined in (4.27) and (4.28).
Equation (4.29) is exactly the reflection coefficient for a rectangular potential
(Al) given in the Appendix.

A=—

(4.29)

4.2. The Transmission Coefficient

Also straightforward is the evaluation of the transmission coeffidiegiven
in Eq. (2.16), for a trapezoidal potential, in the limit whegoes to zero. First, let
us rewrite (2.16) as

) _ . 1/3 2/3a—ika
D 2Kt ika_ _ 2kn'(koa)’r%e (4.30)
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where use was made of Eq. (2.8). When Egs. (2.28) and (4.26) are substituted into
equation (4.30), we obtain

p - _Alke/igeve” (4.31)

Jsint(pa) + 4202 /K

which is the transmission coefficient for a rectangular barrier (A4) given in the
Appendix.

5. DISCUSSION AND CONCLUSION

The trapezoidal potential was analytically treated in detail. Interesting prop-
erties of the Airy functions and its first derivative that were unknown, at least to
the authors, were revealed in the analysis. The scattering coefficients were deter-
mined and it was shown that they have the appropriate limit when the trapezoidal
potential is reduced to a linear or a rectangular one.

It is interesting to compare the behavior of the transmission coefficient for a
trapezoidal barrier with the known behavior of the transmission coefficient for a
rectangular barrier.

In Fig. 1, we show the transmission coefficient (2.16)|¢ actually) in func-
tion of the width barrier fok/ ko = 0.92 and several values of the barrier param-
eter 8 defined in (2.2). Notice thg8 = 1 reproduces the rectangular potential.
The effect of the external electric field is reflected in the oscillations that appear
for lower values of8. This effect can be understood since the smaller values of
B imply a greater dominance of the linear potential (read: The external electric
field).

These oscillations are much clear in Figs. 2 (whetis fixed at 0.3) and 3
(wherek/kq is fixed at 0.96). This interesting oscillation feature is very sim-
ilar to the case of a particle witle > 0 inciding on a square-well potential
(Bastard, 1988). In the present case, as it is clear from the three figures, the
oscillations start appearing for high valueslgfk, which means particles in-
ciding at the highest part of the trapezoidal barrier, i.e., almost overcoming the
potential.

APPENDIX

In this appendix we present some known results for the rectangular (Kobe
et al, 2001) and linear (Gotet al., 2002) potentials.
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IDI?

Fig. 1. Transmission coefficienD|? for a trapezoidal barrier as function of
the barrier width for several values gfand fixed inciding energyk( ko =
0.92).

A. 1. Rectangular Barrier Reflection Coefficient

Al sinh (pa) e~'* (A1)
Jsint(pa) + ak2o2/ Kl
where
tani = tan() coth(pa) (A2)

and the anglé@ is defined by the relations

k =kg cosf® and p = kg sing (A3)
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k.a

Fig. 2. Transmission coefficienD |2 for a trapezoidal barrier as function of
the barrier width for several values of the inciding energy Arfiked at 0.3.

A. 2. Rectangular Barrier Transmission Coefficient

O__ 2i (kp/kg)efika e it (A4)

Jsint(pa) + 4k2o2/KS

It can be seen easily that
A+ |DI2=1 (A5)

as it should be.
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0.0 10.0 200 800 40.0

Fig. 3. Transmission coefficienD|? for a trapezoidal barrier as function of
the barrier width for several values gfand fixed inciding energyk( ko =
0.96).

A. 3. Linear Barrier Reflection Coefficient (Goto et al., 2002)

_ G ()P (o) — F*(5)G"(50)
A

A

(AB)
where

A = G(§0)F"(5a) — F(50)G™(6a) (A7)

The quantities, G, &, andé, are defined in (2.11), (2.12), (2.17), and (2.18),
respectively, withy = 1. Linear barrier transmission coefficient

_ F*(62)G(5a) — F(62)G"(%a)
A

D

(A8)
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the other coefficients being

A
C = 2KF*(8a) (A10)
A
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